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ABSTRACT

Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust
transport can generate atmospheric electricity via contact electrification or “triboelectricity.”
In convective structures such as dust devils and dust storms, grain stratification leads to macro-
scopic charge separations and gives rise to an overall electric dipole moment in the aeolian
feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms.
Previous numerical simulations indicate that these storm electric fields on Mars can approach
the ambient breakdown field strength of �25 kV/m. In terrestrial dust phenomena, poten-
tials ranging from �20 to 160 kV/m have been directly measured. The large electrostatic fields
predicted in martian dust devils and storms can energize electrons in the low pressure mar-
tian atmosphere to values exceeding the electron dissociative attachment energy of both CO2
and H2O, which results in the formation of the new chemical products CO/O� and OH/H�,
respectively. Using a collisional plasma physics model, we present calculations of the CO/O�

and OH/H� reaction and production rates. We demonstrate that these rates vary geometrically
with the ambient electric field, with substantial production of dissociative products when
fields approach the breakdown value of �25 kV/m. The dissociation of H2O into OH/H� pro-
vides a key ingredient for the generation of oxidants; thus electrically charged dust may sig-
nificantly impact the habitability of Mars. Key Words: Mars—Dust storm—Dust devil—Elec-
tric field—Oxidant—Habitability. Astrobiology 6, 451–462.
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INTRODUCTION

ACENTRAL QUESTION relevant to the habitabil-
ity of Mars relates to the origin and presence

of oxidants in the atmosphere and soil (Klein,
1998), which may have sterilized the surface and
hence led to the failure of the Viking life sciences
experiments to detect organics (Oyama et al.,
1977). Photochemical processes have been in-
voked to explain the presence of oxidants on
Mars, with hydrogen peroxide (H2O2) the most
likely product (Krasnopolsky, 1993, 1995; Atreya
and Gu, 1994; Nair et al., 1994; Clancy and Nair,
1996). While the recent discovery of H2O2 at 20–40
parts per billion volume on Mars (Encrenaz et al.,
2004) is consistent with production by photo-
chemical processes in the atmosphere, the soil re-
activity implied by the Viking results indicate lev-
els ranging from at least 1 part per million (Zent
and McKay, 1994) up to �250 parts per million
(Mancinelli, 1989). The short lifetime of H2O2 in
the atmosphere relative to its rate of diffusion into
the soil makes the production of the inferred lev-
els of oxidants difficult to explain from photo-
chemical processes alone, and thus additional
sources should be explored. Mills (1977) was one
of the first to consider an alternative production
mechanism when he suggested that the electrifi-
cation in dust storms may be an added physio-
chemical energy source that has the ability to 
create a number of new species, including the ox-
idant H2O2. Oyama and Berdahl (1979) described
the possible creation of an oxygen plasma from
dust electrification on Mars, while Ballou et al.
(1978) showed that oxygen plasmas can create ox-
idants when exposed to basalts.

Here we investigate the implications of the
ubiquitous presence of strong electric fields on
Mars for atmospheric chemical processes relevant
to oxidant production, which result from the ion-
ization and dissociation of H2O by energized elec-
trons in the martian atmosphere. Large electro-
static fields created by dust devils and storms or
other aeolian processes can lead to the creation
and energization of electrons as an ambient core
population is accelerated and the ionization of
CO2 occurs. Using a detailed numerically based
plasma physics model, we calculate the electron
energy distribution for electric fields ranging
from small values (�5 kV/m) to levels near the
breakdown potential (�25 kV/m) that would be
present in a given dust storm event. We then
study the impact of this process on the local at-

mospheric chemistry with an emphasis on prod-
ucts relevant to subsequent oxidant formation.
Under these conditions we find that the dissoci-
ation of H2O via electron collisions produces neg-
ative ions at rates that vary strongly with the ap-
plied electric field and become greater than
photochemical rates by several orders of magni-
tude. The generation of OH/H� will lead to the
subsequent production of H2O2 at rates greater
than photochemical processes (Atreya et al.,
2006). This process would be common in the
lower atmosphere down to the surface and pre-
dominant when high atmospheric dust loads at-
tenuate photochemical processes. This ubiqui-
tous, rapid source of oxidants would provide
strong support for the interpretation of the Viking
results as indicative of a chemically reactive, ox-
idant-rich soil. This mechanism also has implica-
tions for the lifetime and spatial distribution of
methane, recently measured in the atmosphere of
Mars (Formisano et al., 2004; Krasnopolsky et al.,
2004; Mumma et al., 2004).

THE ELECTRIC DUST STORM

The dynamic martian atmosphere is character-
ized by ubiquitous aeolian activity, with signifi-
cant dust lofting and transport occurring over a
wide dynamic range of spatial and temporal
scales. Global dust storms can envelope a signif-
icant fraction of the planet, and appear to be sea-
sonally dependent in that a large number of these
storms occur between southern spring and sum-
mer, around perihelion (Martin and Zurek, 1993).
Over 780 local to regional (�102–106 km2) dust
storms during the 1999 storm season have been
cataloged by Cantor et al. (2001), who studied the
geographic and seasonal dependencies of these
events. The most common dust activity on Mars
occurs at the smallest scale; warm-cored, convec-
tive vortices such as dust devils are likely present
to varying extents during most seasons (Newman
et al., 2002; Fisher et al., 2005). Dust devils with
diameters between 100 m and 1 km, and heights
of up to 5–10 km, are frequently observed on
Mars (Thomas and Gierasch, 1985; Fisher et al.,
2005). Based on their Mars Global Surveyor-ob-
served tracks, Mars’ dust devils are found at
nearly all locations on the planet, and because of
their dynamic nature, they are continuously re-
moving dust from the surface and maintaining
the bulk atmospheric dust opacity during non-
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FIG. 1. a: Terrestrial electric field mea-
surements of dust devils such as this event
near Eloy, AZ. Maximum electric fields oc-
cur near the core of the events, in many
cases saturating the instrument with read-
ings below �20 kV/m. b: Models for both
macro- and microelectrification in a dust
devil. Larger dust storm electrification is
envisioned to occur in a similar manner.

b

a
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storm seasons (Ryan and Lucich, 1983; Smith and
Lemmon, 1999; Ferri et al., 2003).

Experimental and theoretical investigations of
frictional charging mechanisms in both small-
and large-scale meteorological phenomena sug-
gest that Mars very likely possesses an electrically
active atmosphere as a result of dust-lifting
processes of all scales, including dust devils and
dust storms. Naturally occurring dust activity is
nearly always associated with significant electri-
fication via the process of triboelectricity—the
frictional charging of dust grains in contact with
one another or the surface as they are transported
by wind or convective circulations. In terrestrial
systems, early studies clearly demonstrated the
presence of electric fields in the kilovolt/meter
range within about 100 m of dust devils (Freier,
1960; Crozier, 1964, 1970). More recently, electric
fields ranging from �3 kV/m to greater than 20
kV/m have been measured within dust devils, as
shown in Fig. 1a (Farrell et al., 2003, 2004; Renno
et al., 2004). Surface processes can also generate
significant electrification. In saltating sand, in
which impacts from sand particles on approxi-
mately centimeter-scale ballistic trajectories gen-
erate lofted dust, fields in excess of 160 kV/m
have been measured within the first few cen-
timeters of the surface (Schmidt et al., 1998). The
largest terrestrial dust events, volcanic plumes,
can generate lightning, and thus serve as a
demonstration that electrified dust can indeed
reach breakdown potentials (Anderson, 1965).
Contact electrification can lead to differential
charging of dust grains via a variety of mecha-
nisms; in events with grains of similar composi-
tion, smaller particles typically obtain a net neg-
ative charge, while larger particles become
positive (Ette, 1971; Melnik and Parrot, 1998; Far-
rell et al., 2003; Renno et al., 2003). Thus a large-
scale electric dipole moment can be generated by
nearly any process with a vertical lifting compo-
nent, as the smaller, negatively charged grains are
transported to higher altitudes than the heavier,
positively charged grains. In dust devils and dust
storms, the vertical stratification of grains based
on size and mass will create a stratification of
charge, which creates an electric dipole moment
with a spatial scale on the order of the storm size
(Fig. 1b). Based on the results of terrestrial ex-
periments and their implications for the presence
of electrification processes on Mars, Melnick and
Parrot (1998) used a particle-in-cell numerical
model to show that electric fields up to the break-

down potential of 25 kV/m can easily occur near
the martian surface.

DUST STORM-DRIVEN 
ELECTRON ENERGIZATION

The martian troposphere may be considered as
a tenuous electron plasma due to the presence of
a high-density neutral background dominated by
electron-neutral collisional processes. Based on
the penetration of ionizing radiation from cosmic
rays and radioactive elements in the martian
crust, a representative core population electron
density near the surface is ne � 5 � 106/m3

(Whitten et al., 1971). These electrons interact with
the ambient CO2 via a multitude of collisional
processes with cross sections that vary strongly
with energy. At low energies (�1 eV), elastic scat-
tering and momentum transfer determine the
electron drift velocities through the medium. In
the range of 1–10 eV, CO2 possesses large cross
sections for vibrational and electronic excitation
through electron collisions.

An important process in this energy range is
dissociative attachment, in which an electron at-
taches to a CO2 molecule, which then rapidly dis-
sociates into a negative ion and a neutral mole-
cule. Electron attachment processes are an
important part of the chemistry of the terrestrial
atmosphere, where they are the dominant means
by which negative ions are produced from O2
(Viggiano and Arnold, 1995). In dissociative at-
tachment, the following reaction occurs:

e � AB � A� � B (1)

A second process, associative electron attach-
ment, involves a third body:

e � AB � M � AB� � M (2)

In the lower terrestrial atmosphere, the three-
body process dominates. However, at higher al-
titudes and under an appreciable electric field,
electron dissociative attachment is the dominate
mechanism for free electron removal and nega-
tive ion formation, particularly near discharge
events in the vicinity of thunderstorm activity.

The behavior of tenuous electron plasmas in
the presence of a neutral CO2 background was
investigated numerically by Nighan (1970), who
considered a range of electron–CO2 collisional
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processes in the presence of an electric field for
parameters relevant to Mars. In this approach the
electron distribution is described by the Boltz-
mann equation:

� ��v f(v�) � � � c
(3)

where e is the electron charge, me is the electron
mass, E� is the applied electric field, and f(v�) is the
electron distribution as a function of the three-di-

∂f(v�)
	

∂t
eE�
	
me

mensional velocity vector v�. The subscript c on
the right-hand side of Eq. 3 denotes effects due
to electron collisions and is a sum over all rele-
vant collisional cross sections describing elec-
tron–CO2 interactions, including momentum
transfer, vibrational and electronic excitations,
dissociative attachment, and impact ionization.
Figure 2 shows graphically some of these inter-
actions, i.e., electron impact ionization and disso-
ciation of both CO2 and H2O, including the rele-
vant electron energies. In Eq. 3, the acceleration
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FIG. 2. Electron–CO2 and –H2O impact processes. Cross-section data shown for CO2 ionization and dissociation
were compiled by Itikawa (2002); H2O dissociation cross-section data were provided by Itikawa and Mason (2005).
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of the electrons via the electric force is offset by
energy-depleting interactions with the CO2 mol-
ecule, which occur on spatial scales of the mean
free path; the combination of these effects can cre-
ate a statistical electron energy distribution that
varies substantially from a Maxwellian distribu-
tion. The average electron energy increases with
electric field strength, which results in the devel-
opment of a high-energy tail in the electron en-
ergy distribution.

Numerical solutions to Eq. 3 can be found
based on the Pitchford, O’Neil, and Rumble
(POR) technique (Pitchford et al., 1981). For the
electron–CO2 interactions on the right-hand side
of Eq. 3, we consider the vibrational, excitational,
attachment, and ionization processes shown in
Table 1. The values of electric field E we use range
from �5 kV/m to near the theoretical breakdown
potential of �25 kV/m for Mars. Solutions to Eq.
3 are greatly facilitated by the transformation to
the new variable u � mev2/2e, the electron energy
in eV; we then define a new normalization for the
distribution function f(u) such that �u1/2f(u)du �
1. Figure 3 shows the results of solving Eq. 3 for
f(u), where the effect of an increasing electric field
on the electron distribution is dramatic and pro-
duces significant high-energy tails for fields be-
tween 8 and 25 kV/m compared with the lower
field cases. It is important to note that solutions
to Eq. 3 do not represent an actual large-scale dis-
charge process (i.e., martian lightning); instead,
we have estimated the energization of a thermal
core of electrons in the presence of a charging
field E that interacts with the ambient CO2 at-
mosphere prior to a catastrophic release of elec-
tron current in a full breakdown scenario. By far
the most important implication of Eq. 3 is that the
solutions are remarkably non-Maxwellian. In

most cases, a Maxwellian distribution will not be
a good approximation to the electron distribution
for the range of electric field values we consider
here (Nighan, 1970). The distribution f(u) is in fact
heavily modified by its interaction with CO2 and
thus must be explicitly calculated based on the
relevant physical parameters for Mars, which are
primarily governed by E/N, the ratio of the elec-
tric field to the neutral density.

PRODUCTION OF NEGATIVE 
IONS AND NEUTRALS

Once produced, the enhanced populations of
electrons at higher energies will then have a
markedly increased probability of impacts with
other trace atmospheric constituents through a
variety of interaction cross sections. While ion-
ization processes are important, many additional
reactions will occur at energies less than the ion-
ization potentials of ambient molecules, particu-
larly in the 4–12 eV range where dissociative at-
tachment processes come into play. Motivated by
the expected correlation between the presence of
H2O and H2O2 (Encrenaz et al., 2002), we now di-
rect our attention to the impact of the electron dis-
tribution f(u) on H2O. For the enhanced electron
population we see in f(u) above 4 eV, the break-
down of H2O via dissociative electron attachment
will be a significant possibility. These reactions
are outlined in Table 2. In this process, three neg-
ative ion species are possible: H�, OH�, and O�.
The cross section for the production of H� is
greater than those of the other negative ions by
one or more orders of magnitude (Itikawa and
Mason, 2005) and will be the dominant product
considered here. The production rate of a prod-
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TABLE 1. CO2–ELECTRON INTERACTIONS

Cross sections and
Process Mode energy range

CO2–electron Momentum transfer �4–180 � 10�16 cm2

collisions below 1 eV
CO2 vibrational Symmetric, asymmetric, and bending modes �3 � 10�16 cm2, 0.1–20 eV

excitation (000 → 010,000 → 020 � 100,000 → 001, 0n0 → n00)
CO2–electronic Various electronic transitions (3
�

u, 1
�
u, 1�u . . .) 0.01–6 � 10�16 cm2,

excitation 0.1–100 eV
CO2 → CO2

� Impact ionization �4 � 10�16 cm2, 13.7–100 eV
CO2 → CO/O� Electron dissociative attachment 1.5 � 10�19 cm2 at 4.3 eV

dissociation 4.28 � 10�19 cm2 at 8.1 eV

After Itikawa (2002).
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uct n� from the electron distribution acting on a
material of number density n is given by

� knne (4)

where k is the chemical rate constant and ne is the
electron density. The presence of energized electrons
in the CO2 atmosphere will augment the production
rate of any species n� in two ways: first, via the in-
teraction cross sections for specific reactions that
form the rate constant k, and also through increas-
ing the degree of ionization of the atmosphere lead-
ing to larger values of ne. Using the electron distri-
butions obtained numerically, we can calculate the
chemical rate constant based on the interaction cross
sections for dissociative attachment interactions:

k � ��v� � � 	
1/2 
 �(u)uf(u)du (5)2e

	
me

dn�
	
dt

where f(u) is the electron distribution function we
have determined using Eq. 3, u is the electron en-
ergy in eV, and �(u) is the energy-dependent
cross section for electron–H2O dissociative at-
tachment.

The calculation of ne, the bulk electron density
in the presence of an electric field, follows the
Townsend formalism (Llewellyn-Jones, 1981), in
which ne is given by

ne � noe�x (6)

where no is the initial seed electron density (due
to steady-state conditions at the surface of Mars
outside the influence of electric fields), � is the
Townsend first ionization coefficient, and x is a
physical length scale over which the electric fields
persist. The Townsend coefficient � is determined
similarly as with the rate constant k

� � � 	
1/2  




13.8 eV

�i(u)uf(u)du (7)

where nCO2 is the density of CO2, �i(u) is the ion-
ization cross section for CO2 above �13.8 eV, and
vd is the electron drift velocity:

vd � � � 	
1
2 


u
u du (8)

The constant � then describes the growth of elec-
trons via electron–CO2 ionization as suggested by
Eq. 6. The choice of x in Eq. 6 is usually given by
the electrode spacings in laboratory experiments
designed to study ionization processes. In our
case, we consider x to be the length scale of co-
herent electric fields occurring in dust events.
Though x may be considerably larger, we made
a conservative estimate of x � 1 m, based on mea-

1
	
�(u)

∂f
	∂u

2e
	
me

E
	
3N

2e
	
me

nCO2
	

vd
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FIG. 3. The electron density distribution in the atmos-
phere at the surface of Mars for varying values of a dust
storm-generated electric field. A neutral density of n � 2 �
1023/m3 and an initial core electron density of no � 5 �
106/m3 is assumed. The variable u is the electron energy in
eV, and f(u) defined such that �u1/2f(u)du � 1. For electric
fields �8 kV/m, a substantial high-energy tail develops.

TABLE 2. H2O DISSOCIATIVE ATTACHMENT PROCESSES

Dissociation product Energy (eV)

O(3P) � H2(X) 5.03
OH(X) � H(n � 1) 5.10
O*(1D) � H2(X) 7.00
OH*(A) � H(n � 1) 9.15
O*(1S) � H2(X) 9.22
O(3P) � 2H 9.51
O*(3s3SO) � H2(X) 14.56
OH(X) � H*(n � 2) 15.30
OH(X) � H*(n � 3) 17.19

Compiled by Itikawa and Mason (2005).
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surements taken in terrestrial dust devils (Delory
et al., 2002; Farrell et al., 2003) and consistent with
the desire to keep ne �� nCO2 such that the en-
ergetic electrons remain a perturbation against
the neutral background, with a degree of ioniza-
tion �10�5.

The cross sections for dissociative attachment
of H2O were compiled by Itikawa and Mason
(2005) and based on measurements conducted by
Melton (1972) and Compton and Christophorou
(1967). The highest cross sections for negative ion
production from dissociative electron attachment
of H2O are for H�, peaking at �6.37 � 10�18 cm2

near �6.4 eV, and also �1.16 � 10�18 cm2 near
�8.2 eV, while cross sections for OH� and O�

production peak at values �1 � 10�19 and
�5.8 � 10�19 cm2, respectively. Using these cross
sections and an H2O column density of �20 pr-
�m (where pr-�m represents “precipitable mi-
cron,“ and 1 pr-�m � 10�4 g/cm2 of H2O �
3.35 � 1018/cm2 of H2O molecules, correspond-
ing to �0.03% of the neutral number density at
the surface), we calculate the production rates of
these products as a function of electric field in
Table 3. Results of similar calculations for disso-
ciation of CO2 into CO and O� are also listed in
Table 3. Figure 4 shows the corresponding pa-
rameters for the electron energetics and CO2 ion-
ization, where ne, νd, �, and the rates of CO/O�

and OH/H� production are plotted as a function
of electric field E in kV/m.

DISCUSSION AND SIGNIFICANCE

Using a rigorous plasma physics approach, we
arrive at a physical model, as discussed below,
that reveals the impact of dust devil- and storm-
generated electric fields on the atmospheric
chemistry of Mars.

During virtually any dust activity arising from
the ubiquitous saltation processes in dust devils

or the larger dust storms, significant triboelectric
charging of dust grains occurs. Subsequent loft-
ing followed by vertical stratification of these
charge carriers results in large-scale electric
fields. Acting under the influence of the electric
field, a population of preexisting ambient elec-
trons becomes energized and impacts atmo-
spheric CO2 via a multitude of elastic, vibrational,
electronic excitational, ionization, and dissocia-
tive attachment processes. The electron density ne
grows substantially as ionization of the CO2 at-
mosphere occurs. The mediation between energy
gained through the electric field versus the en-
ergy lost due to CO2 interactions is expressed by
the final solution to the electron distribution func-
tion f(u) in Fig. 3. These distributions are re-
markably non-Maxwellian, with increasing high-
energy tails becoming prominent with increasing
electric field. Once derived, the electron distribu-
tion f(u) enables the calculation of the production
rates of other chemical species. In this case, be-
cause of the importance of H2O in the formation
of H2O2, we examine the impact of f(u) on the sta-
bility of atmospheric H2O and find that dissocia-
tive attachment from the energized electrons
leads primarily to the production of OH/H�, fol-
lowed by O� (and either 2H or H2) and OH/H�.

It is important to make the distinction between
a full discharge process and the electron ener-
gization that we model here. In particular, we
note that the electron density expression in Eq. 6
also possesses a denominator of the form 1 �
(�/�)(e�x � 1) (Uman, 1969; Llewellyn-Jones,
1981), which is ignored in our current calculation.
The variable � is the growth rate of secondary
electrons produced by the gas (electrons pro-
duced by processes other than electron/molecule
impact ionization), with �/� often referred to as
Townsend’s second coefficient, and x is the elec-
trode/anode distance. If a substantial number of
secondary electrons are produced in the plasma,
this denominator can go to zero, thereby making

DELORY ET AL.458

TABLE 3. CO2 AND H2O DISSOCIATION RATES

Rate (m�3s�1)

Electric field (kV/m) CO2 → CO/O� H2O → OH/H� H2O → O� H2O → OH�/H

5 4.17 � 109 1.31 � 107 5.30 � 105 2.77 � 105

10 7.75 � 1011 3.17 � 109 1.83 � 108 7.63 � 107

16 7.53 � 1012 3.27 � 1010 2.85 � 109 9.30 � 108

20 1.45 � 1014 6.24 � 1011 6.54 � 1010 1.93 � 1010

25 3.38 � 1017 1.42 � 1015 1.75 � 1014 4.75 � 1013
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the electron density tend toward infinity (all
bound electrons are free). This situation of 
complete gas breakdown defines a “filamentary”
discharge like the one that occurs in terrestrial
cloud-to-ground lightning. Secondary electron
generation processes are difficult to quantify, and
their behavior is usually a strong function of the
boundary conditions imposed on the plasma.
While filamentary discharge and complete gas
breakdown is possible in a low-density CO2 gas
with secondaries (Llewellyn-Jones, 1981), we
choose to ignore secondary processes and dis-
charges for our martian dust storm model given
the high degree of uncertainty that would then
affect the reliability of the derived chemical rates
for OH/H� and other negative ion production.

Hence, by not including secondary electron
generation processes (� � 0), we rule out chem-
istry from filamentary, ionized discharges. How-
ever, our calculations show that in pre-break-
down conditions, significant chemical reaction
rates are generated even in the case where the

plasma electron density is relatively small com-
pared with the ambient density and the electron
drift velocities �d are �106 m/s. These drift ve-
locities describe a slow-moving, mildly ionized
plasma that is very different from a typical dis-
charge event, such as those that occur in terres-
trial cloud-to-ground lightning stroke where ion-
ization is nearly 100% and the electron speed is
0.1–0.3c (Uman, 1969). The plasma in the martian
dust storms may be more reminiscent of that in
terrestrial sprites: transient mesosphere luminous
emissions (Rowland, 1998; Sentman et al., 1995;
Sentman and Wescott, 1995) that are also mildly
ionized (a few percent) and relatively slow mov-
ing (Pasko et al., 1995, 1997). Further, the 30–50-
km region of the terrestrial atmosphere has sim-
ilar pressures as the lower martian atmosphere,
which suggests similar atmospheric environ-
ments for the two plasmas. Sprites result when
lightning-related post-discharge electrostatic
fields between the cloudtops and ionosphere be-
come large, and create electric field-driven elec-
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H2O dissociation rates (dn’/dt) as a function of dust storm-driven electric fields.
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tron energization that acts to initiate excitation of
mesospheric gas. In the martian dust devil/storm
case, we are considering electrostatic fields that
form between the analogous ground and dust
storm top that also give rise to electric field-
driven electron energization. Certainly for the
case of filamentary discharges and large electron
densities, Eqs. 4 and 5 indicate greater produc-
tion of CO, OH, and the negative ions. However,
substantial reaction rates still occur in the low-
density, slow-moving corona-like plasma we
have modeled here (see Fig. 4).

The rates calculated for the production of
OH/H� are particularly significant in terms of
the subsequent generation of H2O2 (Atreya et al.,
2006). OH/H� production from photochemical
processes alone is estimated to be �1010 m�3 s�1,
while our calculations indicate that electric field-
driven OH/H� rates become equal to photo-
chemical rates in the presence of �10 kV/m fields
and grow exponentially to orders of magnitude
greater values by 20–25 kV/m. As shown by
Atreya et al. (2006), the rates of OH/H� produc-
tion listed in Table 3 will enable the creation of
H2O2 at rates of up to �200 times typical photo-
chemical rates. While the impact of electrified
dust on oxidant production is potentially sub-
stantial, this process may also be limited by sev-
eral key factors. First and foremost, the produc-
tion of OH/H� is clearly dependent on the
amount of water vapor present, which could be
the limiting factor for the subsequent generation
of H2O2. Thus, we expect a wide variability in the
efficiency of our electrochemical model, depend-
ing on the distribution and amount of H2O avail-
able during dust events. The spatial extent and
degree of electrification within martian dust
storms and devils will also ultimately define lim-
its. While discharges are common in terrestrial
storm systems, macroscopic electric fields rarely
exceed 400 kV/m (Winn et al., 1974), a fraction of
the atmospheric breakdown potential of �3,000
kV/m. This discrepancy represents an unre-
solved issue in terrestrial thunderstorm electrifi-
cation and may indicate that breakdown poten-
tials are highly spatially localized within a given
storm and difficult to measure in situ. Thus, if the
electrification of martian dust storms is analo-
gous to terrestrial thunderstorms, these events
may only reach some fraction of the martian
breakdown potential over most of the storm vol-
ume. However, details of the charging process are
likely different for dust storms on Mars compared

with analogous terrestrial processes. While large-
scale, macroscopic electric fields may be limited
on Mars as in the terrestrial case, numerous mod-
els do admit the possibility for higher fields that
approach breakdown levels on large scales (Mel-
nik and Parrot, 1998; Farrell et al., 2003). Pending
a verification of these electric fields using mea-
surements from a future instrument on Mars, we
include the full range of likely potentials that may
be encountered within a martian dust storm such
that all likely production rates can be considered.

Despite these potential limitations, there is rea-
son to believe that dust storm-driven electro-
chemistry on Mars could be a compelling expla-
nation for the degree of chemical reactivity and
resulting sterility of martian soil as implied by the
Viking lander results. Even if larger-scale fields
are limited on Mars, reaction rates on the order
of photochemical contributions will still occur for
fields of �10 kV/m, less than half of the theoret-
ical breakdown. We have also modeled predis-
charge conditions only; subsequent electrical
breakdown and the possibility of runaway elec-
trons in analogy with terrestrial sprites may in-
troduce new and more energetic electrochemical
processes, albeit over short temporal and spatial
scales. Additional aspects of our model relevant
to enhanced oxidant production include the fact
that these processes occur close to the surface,
which results in a higher probability for any H2O2
condensate to enter the regolith before significant
re-vaporization. The near-surface location of elec-
tric field-driven ion production also translates
into the availability of a larger amount of ambi-
ent H2O compared with what is available for pho-
tochemical processes at higher altitudes, which
results in enhanced production of H2O2.

CONCLUSION

Theory and experiment provide ample evi-
dence that dynamic dust events are nearly always
significantly electrified. Using a collisional
plasma physics model, we have shown that elec-
trons acting under the influence of these electric
fields in the martian atmosphere can significantly
enhance the creation of chemical products that
are important precursors to the production of the
oxidant H2O2. Measurements of electric fields on
Mars, obtained simultaneously with the charac-
terization of any trace species production using a
gas analyzer, would provide some observational
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constraints on the importance of the electro-
chemical process we have outlined. Assuming
that electrochemical processes in martian dust
storms remain a possibility, future work will in-
clude an examination of the direct impact of en-
ergized electrons on other trace atmospheric con-
stituents on Mars, such as methane and any
organic compounds. Additionally, there is the
question of the global and historical impact of at-
mospheric electricity on atmospheric chemistry,
which depends on the spatial and temporal cov-
erage of these events as well as their degree of
large-scale electrification.
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